Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Pol J Microbiol ; 72(2): 143-154, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2326672

ABSTRACT

Both pulmonary arterial hypertension (PAH) and chronic obstructive pulmonary disease (COPD) are risk factors for coronavirus disease 2019 (COVID-19). Patients with lung injury and altered pulmonary vascular anatomy or function are more susceptible to infections. The purpose of the study is to ascertain whether individuals with COPD or PAH are affected synergistically by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Data sources for the construction of a protein-protein interaction (PPI) network and the identification of differentially expressed genes (DEGs) included three RNA-seq datasets from the GEO database (GSE147507, GSE106986, and GSE15197). Then, relationships between miRNAs, common DEGs, and transcription factor (TF) genes were discovered. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and other databases, as well as the forecasting of antiviral medications for COPD and PAH patients infected with SARS-CoV-2, were also performed. Eleven common DEGs were found in the three datasets, and their biological functions were primarily enriched in the control of protein modification processes, particularly phosphorylation. Growth factor receptor binding reflects molecular function. KEGG analysis indicated that co-DEGs mainly activate Ras, and PI3K-Akt signaling pathways and act on focal adhesions. NFKB1 interacted with HSA-miR-942 in the TF-miRNA-DEGs synergistic regulatory network. Acetaminophen is considered an effective drug candidate. There are some connections between COPD and PAH and the development of COVID-19. This research could aid in developing COVID-19 vaccines and medication candidates that would work well as COVID-19 therapies.


Subject(s)
COVID-19 , MicroRNAs , Pulmonary Arterial Hypertension , Pulmonary Disease, Chronic Obstructive , Humans , COVID-19 Vaccines , Phosphatidylinositol 3-Kinases , SARS-CoV-2/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Signal Transduction/genetics , MicroRNAs/genetics
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2296907

ABSTRACT

There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and ß-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.


Subject(s)
Kidney Neoplasms , Signal Transduction , Humans , Etoposide , Signal Transduction/genetics , Hydroxyurea , Kidney Neoplasms/genetics , Carrier Proteins , Protein Serine-Threonine Kinases
3.
Pathol Oncol Res ; 27: 588532, 2021.
Article in English | MEDLINE | ID: covidwho-2288595

ABSTRACT

Background and Objective: Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor of the digestive system worldwide. Chronic hepatitis B virus (HBV) infection and aflatoxin exposure are predominant causes of HCC in China, whereas hepatitis C virus (HCV) infection and alcohol intake are likely the main risk factors in other countries. It is an unmet need to recognize the underlying molecular mechanisms of HCC in China. Methods: In this study, microarray datasets (GSE84005, GSE84402, GSE101685, and GSE115018) derived from Gene Expression Omnibus (GEO) database were analyzed to obtain the common differentially expressed genes (DEGs) by R software. Moreover, the gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protein-protein interaction (PPI) network was constructed, and hub genes were identified by the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape, respectively. The hub genes were verified using Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and Kaplan-Meier Plotter online databases were performed on the TCGA HCC dataset. Moreover, the Human Protein Atlas (HPA) database was used to verify candidate genes' protein expression levels. Results: A total of 293 common DEGs were screened, including 103 up-regulated genes and 190 down-regulated genes. Moreover, GO analysis implied that common DEGs were mainly involved in the oxidation-reduction process, cytosol, and protein binding. KEGG pathway enrichment analysis presented that common DEGs were mainly enriched in metabolic pathways, complement and coagulation cascades, cell cycle, p53 signaling pathway, and tryptophan metabolism. In the PPI network, three subnetworks with high scores were detected using the Molecular Complex Detection (MCODE) plugin. The top 10 hub genes identified were CDK1, CCNB1, AURKA, CCNA2, KIF11, BUB1B, TOP2A, TPX2, HMMR and CDC45. The other public databases confirmed that high expression of the aforementioned genes related to poor overall survival among patients with HCC. Conclusion: This study primarily identified candidate genes and pathways involved in the underlying mechanisms of Chinese HCC, which is supposed to provide new targets for the diagnosis and treatment of HCC in China.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , China/epidemiology , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Liver Neoplasms/epidemiology , Liver Neoplasms/pathology , Prognosis , Protein Interaction Maps , Signal Transduction/genetics
4.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2240601

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) has led to a rapid increase in death rates all over the world. Sepsis is a life-threatening disease associated with a dysregulated host immune response. It has been shown that COVID-19 shares many similarities with sepsis in many aspects. However, the molecular mechanisms underlying sepsis and COVID-19 are not well understood. The aim of this study was to identify common transcriptional signatures, regulators, and pathways between COVID-19 and sepsis, which may provide a new direction for the treatment of COVID-19 and sepsis. First, COVID-19 blood gene expression profile (GSE179850) data and sepsis blood expression profile (GSE134347) data were obtained from GEO. Then, we intersected the differentially expressed genes (DEG) from these two datasets to obtain common DEGs. Finally, the common DEGs were used for functional enrichment analysis, transcription factor and miRNA prediction, pathway analysis, and candidate drug analysis. A total of 307 common DEGs were identified between the sepsis and COVID-19 datasets. Protein-protein interactions (PPIs) were constructed using the STRING database. Subsequently, hub genes were identified based on PPI networks. In addition, we performed GO functional analysis and KEGG pathway analysis of common DEGs, and found a common association between sepsis and COVID-19. Finally, we identified transcription factor-gene interaction, DEGs-miRNA co-regulatory networks, and protein-drug interaction, respectively. Through ROC analysis, we identified 10 central hub genes as potential biomarkers. In this study, we identified SARS-CoV-2 infection as a high risk factor for sepsis. Our study may provide a potential therapeutic direction for the treatment of COVID-19 patients suffering from sepsis.


Subject(s)
COVID-19 , MicroRNAs , Sepsis , Humans , Protein Interaction Maps/genetics , Gene Expression Profiling , Gene Regulatory Networks , COVID-19/genetics , SARS-CoV-2/genetics , MicroRNAs/genetics , Sepsis/complications , Sepsis/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Computational Biology
5.
Genes (Basel) ; 14(1)2022 12 22.
Article in English | MEDLINE | ID: covidwho-2233509

ABSTRACT

Coronavirus disease 19 (COVID-19) has affected over 112 million people and killed more than 2.5 million worldwide. When the pandemic was declared, Spain and Italy accounted for 29% of the total COVID-19 related deaths in Europe, while most infected patients did not present severe illness. We hypothesised that shared genomic characteristics, distinct from the rest of Europe, could be a contributor factor to a poor prognosis in these two populations. To identify pathways related to COVID-19 severity, we shortlisted 437 candidate genes associated with host viral intake and immune evasion from SARS-like viruses. From these, 21 were associated specifically with clinically aggressive COVID-19. To determine the potential mechanism of viral infections, we performed signalling pathway analysis with either the full list (n = 437) or the subset group (n = 21) of genes. Four pathways were significantly associated with the full gene list (Caveolar-mediated Endocytosis and the MSP-RON Signalling) or with the aggressive gene list (Hepatic Fibrosis/Hepatic Stellate Cell (HSC) Activation and the Communication between Innate and Adaptive Immune Cells). Single nucleotide polymorphisms (SNPs) from the ±1 Mb window of all genes related to these four pathways were retrieved from the dbSNP database. We then performed Principal Component analysis for these SNPs in individuals from the 1000 Genomes of European ancestry. Only the Hepatic Fibrosis/HSC Activation pathway showed population-specific segregation. The Spanish and Italian populations clustered together and away from the rest of the European ancestries, with the first segregating further from the rest. Additional in silico analysis identified potential genetic markers and clinically actionable therapeutic targets in this pathway, that may explain the severe disease.


Subject(s)
COVID-19 , Hepatic Stellate Cells , Humans , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , COVID-19/metabolism , Signal Transduction/genetics , Liver Cirrhosis/metabolism , Genetics, Population
6.
Cells ; 11(22)2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2199805

ABSTRACT

Long Intergenic Non-Protein Coding RNA 665 (LINC00665) is an RNA gene located on the minus strand of chromosome 19. This lncRNA acts as a competing endogenous RNA for miR-4458, miR-379-5p, miR-551b-5p, miR-3619-5p, miR-424-5p, miR-9-5p, miR-214-3p, miR-126-5p, miR-149-3p, miR-379-5p, miR-665, miR-34a-5p, miR-186-5p, miR-138-5p, miR-181c-5p, miR-98, miR-195-5p, miR-224-5p, miR-3619, miR-708, miR-101, miR-1224-5p, miR-34a-5p, and miR-142-5p. Via influencing expression of these miRNAs, it can enhance expression of a number of oncogenes. Moreover, LINC00665 can influence activity of Wnt/ß-Catenin, TGF-ß, MAPK1, NF-κB, ERK, and PI3K/AKT signaling. Function of this lncRNA has been assessed through gain-of-function tests and/or loss-of-function studies. Furthermore, diverse research groups have evaluated its expression levels in tissue samples using microarray and RT-qPCR techniques. In this manuscript, we have summarized the results of these studies and categorized them in three sections, i.e., cell line studies, animal studies, and investigations in clinical samples.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Signal Transduction/genetics
7.
Biochem Genet ; 60(6): 2052-2068, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2094662

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is an enveloped single-stranded RNA virus that can lead to respiratory symptoms and damage many organs such as heart, kidney, intestine, brain and liver. It has not been clearly documented whether myocardial injury is caused by direct infection of cardiomyocytes, lung injury, or other unknown mechanisms. The gene expression profile of GSE150392 was obtained from the Gene Expression Omnibus (GEO) database. The processing of high-throughput sequencing data and the screening of differentially expressed genes (DEGs) were implemented by R software. The R software was employed to analyze the Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The protein-protein interaction (PPI) network of the DEGs was constructed by the STRING website. The Cytoscape software was applied for the visualization of PPI network and the identification of hub genes. The statistical analysis was performed by the GraphPad Prism software to verify the hub genes. A total of 516 up-regulated genes and 191 down-regulated genes were screened out. The top 1 enrichment items of GO in biological process (BP), Cellular Component (CC), and Molecular Function (MF) were type I interferon signaling pathway, sarcomere, and receptor ligand activity, respectively. The top 10 enrichment pathways, including TNF signaling pathway, were identified by KEGG enrichment analysis. A PPI network was established, consisting of 613 nodes and 3,993 edges. The 12 hub genes were confirmed as statistically significant, which was verified by GSE151879 dataset. In conclusion, the hub genes of human iPSC-cardiomyocytes infected with SARS-CoV-2 were identified through bioinformatics analysis, which may be used as biomarkers for further research.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Gene Expression Profiling , Myocytes, Cardiac , COVID-19/genetics , Computational Biology , Signal Transduction/genetics
8.
Comput Math Methods Med ; 2022: 9914927, 2022.
Article in English | MEDLINE | ID: covidwho-2020562

ABSTRACT

Introduction: Novel coronavirus pneumonia (COVID-19) is an acute respiratory disease caused by the novel coronavirus SARS-CoV-2. Severe and critical illness, especially secondary bacterial infection (SBI) cases, accounts for the vast majority of COVID-19-related deaths. However, the relevant biological indicators of COVID-19 and SBI are still unclear, which significantly limits the timely diagnosis and treatment. Methods: The differentially expressed genes (DEGs) between severe COVID-19 patients with SBI and without SBI were screened through the analysis of GSE168017 and GSE168018 datasets. By performing Gene Ontology (GO) enrichment analysis for significant DEGs, significant biological processes, cellular components, and molecular functions were selected. To understand the high-level functions and utilities of the biological system, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed. By analyzing protein-protein interaction (PPI) and key subnetworks, the core DEGs were found. Results: 85 DEGs were upregulated, and 436 DEGs were downregulated. The CD14 expression was significantly increased in the SBI group of severe COVID-19 patients (P < 0.01). The area under the curve (AUC) of CD14 in the SBI group in severe COVID-19 patients was 0.9429. The presepsin expression was significantly higher in moderate to severe COVID-19 patients (P < 0.05). Presepsin has a diagnostic value for moderate to severe COVID-19 with the AUC of 0.9732. The presepsin expression of COVID-19 patients in the nonsurvivors was significantly higher than that in the survivors (P < 0.05). Conclusion: Presepsin predicts severity and SBI in COVID-19 and may be associated with prognosis in COVID-19.


Subject(s)
Bacterial Infections , COVID-19 , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lipopolysaccharide Receptors/genetics , Peptide Fragments/genetics , SARS-CoV-2 , Signal Transduction/genetics
9.
Proc Natl Acad Sci U S A ; 119(36): e2120680119, 2022 09 06.
Article in English | MEDLINE | ID: covidwho-2001001

ABSTRACT

The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB-dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.


Subject(s)
COVID-19 , Gene Expression Regulation , Monocytes , RNA, Long Noncoding , SARS-CoV-2 , Alarmins/genetics , COVID-19/genetics , COVID-19/immunology , Humans , Janus Kinases/genetics , Monocytes/immunology , NF-kappa B/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq , SARS-CoV-2/immunology , STAT Transcription Factors/genetics , Signal Transduction/genetics , Single-Cell Analysis
10.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: covidwho-1902046

ABSTRACT

The Sonic hedgehog (Shh) signaling pathway is an essential pathway in the human body that plays an important role in embryogenesis and tissue homeostasis. Aberrant activation of this pathway has been linked to the development of different diseases, ranging from cancer to immune dysregulation and infections.Uncontrolled activation of the pathway through sporadic mutations or other mechanisms is associated with cancer development and progression in various malignancies, such as basal cell carcinoma, medulloblastoma, pancreatic cancer, breast cancer and small-cell lung carcinoma. Targeted inhibition of the pathway components has therefore emerged as an attractive and validated therapeutic strategy for the treatment of a wide range of cancers. Currently, two main components of the pathway, the smoothened receptor and the glioma-associated oncogene homolog transcriptional factors, have been investigated for the development of targeted drugs, leading to the marketing authorization of three smoothened receptor inhibitors for the treatment of basal cell carcinoma and acute myeloid leukemia.The Shh pathway also seems to be involved in regulating the immune response, possibly playing a role in immune system evasions by tumors, development of autoimmune diseases, such as rheumatoid arthritis and Crohn's disease, airway inflammation, and diseases related to aberrant activation of T-helper 2 cellular response, such as allergy, atopic dermatitis, and asthma.Finally, the Shh pathway is involved in pathogen-mediated infection, including influenza-A and, more recently, SARS-CoV-2 viruses. Therefore, agents that inhibit the Shh signaling pathway might be used to treat pathogenic infections, shifting the therapeutic approach from strain-specific treatments to host-based strategies that target highly conserved host targets.


Subject(s)
COVID-19 , Carcinoma, Basal Cell , Cerebellar Neoplasms , Lung Neoplasms , Medulloblastoma , Hedgehog Proteins , Humans , SARS-CoV-2 , Signal Transduction/genetics , Smoothened Receptor/metabolism , Smoothened Receptor/therapeutic use
12.
Cytokine ; 152: 155810, 2022 04.
Article in English | MEDLINE | ID: covidwho-1719582

ABSTRACT

Genome-wide association studies have recently identified 3p21.31, with lead variant pointing to the CXCR6 gene, as the strongest thus far reported susceptibility risk locus for severe manifestation of COVID-19. In order the determine its role, we measured plasma levels of Chemokine (C-X-C motif) ligand 16 (CXCL16) in the plasma of COVID-19 hospitalized patients. CXCL16 interacts with CXCR6 promoting chemotaxis or cell adhesion. The CXCR6/CXCL16 axis mediates homing of T cells to the lungs in disease and hyper-expression is associated with localised cellular injury. To characterize the CXCR6/CXCL16 axis in the pathogenesis of severe COVID-19, plasma concentrations of CXCL16 collected at baseline from 115 hospitalized COVID-19 patients participating in ODYSSEY COVID-19 clinical trial were assessed together with a set of controls. We report elevated levels of CXCL16 in a cohort of COVID-19 hospitalized patients. Specifically, we report significant elevation of CXCL16 plasma levels in association with severity of COVID-19 (as defined by WHO scale) (P-value < 0.02). Our current study is the largest thus far study reporting CXCL16 levels in COVID-19 hospitalized patients (with whole-genome sequencing data available). The results further support the significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19 and warrants further studies to understand which patients would benefit most from targeted treatments.


Subject(s)
COVID-19/blood , Chemokine CXCL16/blood , SARS-CoV-2/metabolism , Aged , COVID-19/genetics , COVID-19/immunology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Female , Humans , Male , Middle Aged , Patient Acuity , Receptors, CXCR6/blood , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Signal Transduction/genetics , Signal Transduction/immunology
13.
Stem Cell Reports ; 17(3): 522-537, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692862

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) commonly have manifestations of heart disease. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 27 proteins. Currently, SARS-CoV-2 gene-induced abnormalities of human heart muscle cells remain elusive. Here, we comprehensively characterized the detrimental effects of a SARS-CoV-2 gene, Orf9c, on human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) by preforming multi-omic analyses. Transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with Orf9c overexpression (Orf9cOE) identified concordantly up-regulated genes enriched into stress-related apoptosis and inflammation signaling pathways, and down-regulated CM functional genes. Proteomic analysis revealed enhanced expressions of apoptotic factors, whereas reduced protein factors for ATP synthesis by Orf9cOE. Orf9cOE significantly reduced cellular ATP level, induced apoptosis, and caused electrical dysfunctions of hPSC-CMs. Finally, drugs approved by the U.S. Food and Drug Administration, namely, ivermectin and meclizine, restored ATP levels and ameliorated CM death and functional abnormalities of Orf9cOE hPSC-CMs. Overall, we defined the molecular mechanisms underlying the detrimental impacts of Orf9c on hPSC-CMs and explored potentially therapeutic approaches to ameliorate Orf9c-induced cardiac injury and abnormalities.


Subject(s)
COVID-19/pathology , Coronavirus Nucleocapsid Proteins/genetics , Genome-Wide Association Study/methods , SARS-CoV-2/genetics , Action Potentials/drug effects , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Apoptosis/genetics , COVID-19/virology , Down-Regulation , Humans , Ivermectin/pharmacology , Meclizine/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phosphoproteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Interaction Maps/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction/genetics , Transcriptome/drug effects , Up-Regulation
14.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1667192

ABSTRACT

This review article was designed to evaluate the existing evidence related to the molecular processes of SARS-CoV-2 infection in the oral cavity. The World Health Organization stated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission is produced by respiratory droplets and aerosols from the oral cavity of infected patients. The oral cavity structures, keratinized and non-keratinized mucosa, and salivary glands' epithelia express SARS-CoV-2 entry and transmission factors, especially angiotensin converting enzyme Type 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Replication of the virus in cells leads to local and systemic infection spread, and cellular damage is associated with clinical signs and symptoms of the disease in the oral cavity. Saliva, both the cellular and acellular fractions, holds the virus particles and contributes to COVID-19 transmission. The review also presents information about the factors modifying SARS-CoV-2 infection potential and possible local pharmacotherapeutic interventions, which may confine SARS-CoV-2 virus entry and transmission in the oral cavity. The PubMed and Scopus databases were used to search for suitable keywords such as: SARS-CoV-2, COVID-19, oral virus infection, saliva, crevicular fluid, salivary gland, tongue, oral mucosa, periodontium, gingiva, dental pulp, ACE2, TMPRSS2, Furin, diagnosis, topical treatment, vaccine and related words in relevant publications up to 28 December 2021. Data extraction and quality evaluation of the articles were performed by two reviewers, and 63 articles were included in the final review.


Subject(s)
COVID-19/pathology , Mouth , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Humans , Mouth/metabolism , Mouth/pathology , Mouth/virology , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Mouth Mucosa/virology , Pathology, Oral , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Serine Endopeptidases/physiology , Signal Transduction/genetics , Virus Internalization
15.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
16.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1649889

ABSTRACT

Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Aß) plaques from improper amyloid-beta precursor protein (APP) cleavage. Following studies of inflammation caused by coronavirus-2019 (COVID-19) infection, this study investigated the impact of COVID-19 on APP expression. A meta-analysis was conducted utilizing QIAGEN Ingenuity Pathway Analysis (IPA) to examine the link between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the modulation of APP expression upon virus binding the Angiotensin-converting enzyme-2 (ACE2) receptor. A Core Analysis was run on the infection by severe acute respiratory syndrome (SARS) coronavirus node, which included molecules affected by SARS-CoV-2, revealing its upstream regulators. Intermediary molecules were found between the upstream regulators and ACE2 and between ACE2 and APP. Activation of the upstream regulators downregulated the expression of ACE2 with a Z-score of -1.719 (p-value = 0.086) and upregulated APP with a Z-score of 1.898 (p-value = 0.058), showing a less than 10% chance of the results occurring by chance and pointing to an inverse relationship between ACE2 and APP expression. The neuroinflammation signaling pathway was the fifth top canonical pathway involved in APP upregulation. The study results suggest that ACE2 could be downregulated by SARS-CoV-2, resulting in APP upregulation, and potentially exacerbating the onset and progression of AD.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , SARS-CoV-2/physiology , Amyloid beta-Protein Precursor/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/metabolism , COVID-19/pathology , Gene Expression Regulation , Humans , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
17.
Signal Transduct Target Ther ; 7(1): 7, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1606287

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.


Subject(s)
AIDS Vaccines/immunology , B-Cell Activating Factor/immunology , COVID-19 Vaccines/immunology , Cytidine Deaminase/immunology , HIV-1/immunology , Nanoparticles , SARS-CoV-2/immunology , Signal Transduction/immunology , Ubiquitin Thiolesterase/immunology , Ubiquitination/immunology , AIDS Vaccines/genetics , Animals , B-Cell Activating Factor/genetics , COVID-19 Vaccines/genetics , Cytidine Deaminase/genetics , HEK293 Cells , HIV-1/genetics , Humans , Mice , Mice, Knockout , SARS-CoV-2/genetics , Signal Transduction/genetics , Ubiquitin Thiolesterase/genetics
18.
Front Immunol ; 12: 789317, 2021.
Article in English | MEDLINE | ID: covidwho-1593957

ABSTRACT

Background: The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods: RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results: Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion: This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Signal Transduction/genetics , Transcription Factors/genetics , Transcriptome/genetics , COVID-19/epidemiology , COVID-19/virology , Cluster Analysis , Gene Ontology , Gene Regulatory Networks , Humans , Immunity/genetics , Models, Genetic , Pandemics , Protein Interaction Maps/genetics , SARS-CoV-2/physiology
19.
Front Immunol ; 12: 724936, 2021.
Article in English | MEDLINE | ID: covidwho-1592205

ABSTRACT

The COVID-19 pandemic has created an urgent situation throughout the globe. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability. The DEGs will help understand the disease's potential underlying molecular mechanisms and genetic characteristics, including the regulatory genes associated with immune response elements and protective immunity. This study aimed to determine the DEGs in mild and severe COVID-19 patients versus healthy controls. The Agilent-085982 Arraystar human lncRNA V5 microarray GEO dataset (GSE164805 dataset) was used for this study. We used statistical tools to identify the DEGs. Our 15 human samples dataset was divided into three groups: mild, severe COVID-19 patients and healthy control volunteers. We compared our result with three other published gene expression studies of COVID-19 patients. Along with significant DEGs, we developed an interactome map, a protein-protein interaction (PPI) pattern, a cluster analysis of the PPI network, and pathway enrichment analysis. We also performed the same analyses with the top-ranked genes from the three other COVID-19 gene expression studies. We also identified differentially expressed lncRNA genes and constructed protein-coding DEG-lncRNA co-expression networks. We attempted to identify the regulatory genes related to immune response elements and protective immunity. We prioritized the most significant 29 protein-coding DEGs. Our analyses showed that several DEGs were involved in forming interactome maps, PPI networks, and cluster formation, similar to the results obtained using data from the protein-coding genes from other investigations. Interestingly we found six lncRNAs (TALAM1, DLEU2, and UICLM CASC18, SNHG20, and GNAS) involved in the protein-coding DEG-lncRNA network; which might be served as potential biomarkers for COVID-19 patients. We also identified three regulatory genes from our study and 44 regulatory genes from the other investigations related to immune response elements and protective immunity. We were able to map the regulatory genes associated with immune elements and identify the virogenomic responses involved in protective immunity against SARS-CoV-2 infection during COVID-19 development.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Immunity/genetics , Aged , COVID-19/epidemiology , COVID-19/immunology , Female , Gene Ontology , Gene Regulatory Networks , Humans , Male , Middle Aged , Pandemics/prevention & control , Protein Interaction Maps/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology
20.
Nat Commun ; 12(1): 4502, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1550282

ABSTRACT

Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Cell Nucleus/metabolism , Membrane Glycoproteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Viral Envelope Proteins/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Biological Transport , Cell Fusion , Cell Line , Cell Line, Tumor , Cells, Cultured , Giant Cells/metabolism , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Mice , RNA-Seq/methods , Signal Transduction/genetics , Transcription Factors/genetics , Viral Envelope Proteins/genetics , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL